Գծային ծրագրավորում

testwiki-ից
14:19, 7 մարտի 2024 տարբերակ, imported>ԱշբոտՏՆՂ
(տարբ) ←Նախորդ տարբերակ | Ընթացիկ տարբերակ (տարբ) | Հաջորդ տարբերակ→ (տարբ)
Jump to navigation Jump to search

Գծային ծրագրավորում, կիրառական մաթեմատիկայի ճյուղ, որը զբաղվում է մաթեմատիկական մեթոդների և օպտիմալացման խնդիրների ալգորիթմերի մշակմամբ n-չափանի էվկլիդյան վեկտորական տարածության մեջ, որը սահմանափակված է գծային անհավասարումներով և հավասարումներով։

Գծային ծրագրավորումը (ԳԾ) ուռուցիկ ծրագրավորման մասնավոր դեպք է, որն էլ իր հերթին հանդիսանում է մաթեմատիկական ծրագրավորման մասնավոր դեպք։ Միաժամանակ այն հանդիսանում է ամբողջաթիվ ծրագրավորման և ոչ գծային ծրագրավորման մի շարք մեթոդների ստեղծման հիմք։ Ընդհանրացված գծային ծրագրավորում է համարվում նաև կոտորակա-գծային ծրագրավորումը։

Գծային ծրագրավորման մի շարք հատկություններ կարելի է մեկնաբանել նաև որպես բազմանկյան (բազմանիստ) հատկություններ, երկրաչափորեն ձևակերպել և ապացուցել։

Պատմություն

Տնտեսագիտության մեջ մաթեմատիկական հետազոտությունները կատարվել են դեռ 19-րդ դարում։ Մաթեմատիկական անալիզում արտադրության ընդլայնման կազմակերպումը իրականացվում էր երկրաչափական առնչությունների միջոցով՝ օգտագործելով դիֆերենցիալհաշիվների մեթոդը։ Դա հնարավորություն էր տալիս կազմել ամբողջական պատկերացում խնդիրների մասին։

Տնտեսության զարգացումը պահանջում էր քանական ցուցանիշներ, և 1920 թվականին ստեղծվեց միջոլորտային հաշվեկշիռ (ՄՈՀ)։ Այն ծառայում էր մաթեմատիկական մոդելների ստեղծման և ուսումնասիրության համար։ ՄՈՀ-ի ուսումնասիրությունները 1924-1925 թվականներին էականորեն ազդեցին ԽՍՀՄ տնտեսագետ և վիճակագիր Վ․ Վ․ Լեոնտևի աշխատանքի վրա։ Նա մշակել է արտադրության և դրա բաշխման միջճյուղային մոդելներ[1]։

1939 թվականին Լ․ Վ․ Կանտորովիչը հրատարակեց «Արտադրության կազմակերպման և պլանավորման մաթեմատիկական մեթոդները» աշխատությունը, որտեղ ձևակերպված էին սահմանափակումներով էքստրեմումի խնդիրների նոր դաս և դրանց լուծման արդյունավետ մեթոդները՝ այդ ձևով հիմք հիմք դնելով գծային ծրագրավորման հիմունքներին։

Այսպիսի մեթոդների ուսումնասիրությունը հանգեցրեց գծային ծրագրավորման նոր ճյուղի ստեղծմանը և նոր էջ բացեց տնտեսա-մաթեմատիկական մեթոդների զարգացման մեջ։

1949 ամերիկացի մաթեմատիկոս Ջորջ Դանցիգը մշակեց գծային ծրագրավորման խնդիրների լուծման արդյունավետ մեթոդ՝ սիմպլեքս-մեթոդ[1]։

«Ծրագրավորում» տերմինը այս դեպքում պետք է հասկանալ որպես «պլանավորում»։ Այն շարունակվել է ուսումնասիրվել 1940-ական թվականների ընթացքում Ջորջ Դանցիգի՝ գծային ծրագրավորման հիմնադիրներից մեկի կողմից, դեռ այն ժամանակ, երբ համակարգիչները չէին օգտագործվում գծային խնդիրների լուծման համար։

Ներքին կետերի մասին առաջինը հիշատակել է Ի․ Ի․ Դիկինը 1967 թվականին[2]։

Խնդիրները

Ընդհանուր (ստանդարտ) ԳԾ խնդիր կոչվում է գծային նպատակային ֆունկցիայի մինիմումի արժեքի որոշումը Կաղապար:Sfn:

f(x)=j=1ncjxj=c1x1+c2x2++cnxn

իսկ անհավասարությունների տեսքով սահմանափակումները կոչվում են Գծային ծրագրավորման հիմնական խնդիր

j=1naijxjbi(i=1,2,,m),
xj0(j=1,2,,n).

Գծային ծրագրավորման խնդիրը կոչվում է կանոնական տեսքի, եթե հիմնական խնդրում անհավասարությունները գրված են հավասարությունների տեսքովԿաղապար:Sfn։

j=1naijxj=bi(i=1,2,,m),

Հիմնական խնդիրը կարելի է բերել կանոնական տեսքի նոր փոփոխականների ավելացման միջոցով։

Գծային ծրագրավորման ընդհանուր տեսքի խնդիրները կարող են բերվել համարժեքորեն կանոնական և ընդհանուր տեսքի անհավասարությունները հավասարություններով փոխարինելով և հակառակըԿաղապար:Sfn։

Խնդրում մաքսիմումի արժեքի որոշումը կարելի է հեշտորեն գտնել փոխելով c գործակիցների նշանները։

Գծային ծրագրավորման երկակի խնդիրներ

Յուրաքանչյուր հետևյալ տեսքի ԳԾ խնդիր[3]

j=1naijxjci,i=1,m; xj0,j=1,n; F(x)=j=1nbjxjmax

կարելի է համապասխանեցնել մեկ ուրիշ ԳԾ խնդրի հետ,որը կոչվում է երկակի խնդիր։ Ուղիղ և երկակի խնդիրների կապը այն է, որ գտնելով մեկի լուծումը՝ ուղղակիորեն կարելի է գտնել նաև մյուսինը։ Երկակի և ուղիղ խնդիրների կապը հետևյալն է՝

Ուղիղ խնդիր Երկակի խնդիր
j=1naijxjci,i=1,m yi0,i=1,m
xj0,j=1,n i=1maijyibj,j=1,n
F(x)=j=1nbjxjmax T(y)=i=1mciyimin

Եթե x և y վեկտորները ուղիղ և երկակի խնդիրների թույլատրելի լուծումներն են, ապա F(x)T(y), ընդ որում հավասարությունը հաստատվում է միայն և միայն այն դեպքում, երբ x և y վեկտորները օպտիմալ լուծումներ են։ Եթե խնդիրներից որևէ մեկի նպատակային ֆունկցիան սահմանափակ չէ (ուղիղ խնդրի դեպքում վերևից,երկակիի դեպքում՝ ներքևից), ապա մյուս խնդրի թույլատրելի արժեքների տիրույթը դատարկ է։

Եթե x* և y* վեկտորները համապատասխանաբար ուղիղ և երկակի խնդիրների լուծումներն են,ապա տեղի ունի հետևյալ հավասարությունը՝

xj*(i=1maijyi*bj)=0,j=1,n;

yi*(j=1naijxj*ci)=0,i=1,m.

Երկակի խնդրի այս հատկությունը թույլ են տալիս կրճատել լուծման համար պահանջվող ժամանակը, եթե ստիպված ենք լինում լուծել շատ փոփոխականներով խնդիրներ։ Այդ դեպքում, լուծելով երկակի խնդիրը և գտնելով նրա հենային պլանը, կարող ենք գտնել դրան համապատասխան ուղիղ խնդրի հենային պլանը, հետևաբար նաև լուծել խնդրի լուծումը։

Ծանոթագրություններ

Կաղապար:Ծանցանկ

Գրականություն

Արտաքին հղումներ

  1. 1,0 1,1 Աղբյուրը։ Алтайская краевая универсальная научная библиотека им. В. Я. Шишкова (АКУНБ). Методы оптимизации: Учеб. пособие. Бразовская Н. В.; Алтайский государственный технический университет им. И. И. Ползунова, [Центр дистанц. обучения]. — Барнаул: Изд-во АлтГТУ, 2000. — 120 с. — ISBN 5-БНВ-МОр.9.00 — УДК/ББК 22.183.4 Б871.
  2. Կաղապար:Статья
  3. Электронный учебник "Экономико-математические методы". Двойственность в линейном программировании Կաղապար:Webarchive