Մոնտի Հոլի պարադոքս


Մոնտի Հոլի պարադոքս, հավանականությունների տեսության հայտնի առաջադրանքներից մեկը, որի լուծումն, առաջին հայացքից, հակասում է առողջ բանականությանը։ Այս առաջադրանքը, բառի նեղ իմաստով, պարադոքս չէ, քանի որ իր մեջ չի պարունակում հակասություն։ Այն կոչվում է պարադոքս այն պատճառով, որ առաջադրանքի լուծումը կարող է թվալ անսպասելի։ Ավելին, շատ մարդկանց համար դժվար է ընդունել ճիշտ որոշում նույնիսկ այն բանից հետո, երբ նրան բացատրվում է ճիշտ լուծումը[1]։
Առաջադրանքն առաջին անգամ հրապարակվել է[2][3] (պատասխանի հետ միասին) 1975 թվականին «The American Statistician» ամսագրում, Բերկլիի կալիֆորնյան համալսարանի պրոֆեսոր Սթիվ Սելվինի կողմից։ Այն դարձել է առավել հայտնի 1990 թվականին, երբ հրապարակվել է «Parade» ամսագրում[4]։
Ձևակերպում
Առաջադրանքը ձևակերպվում է որպես խաղի նկարագրություն, որը հիմնված է ամերիկյան «Let’s Make a Deal» հեռուստախաղի վրա և անվանվել է ի պատիվ հեռուստախաղի հաղորդավարի։ Այս առաջադրանքի ամենատարածված տարբերակներից մեկը, որը 1990 թվականին հրապարակվել է «Parade Magazine»մ ամսագրում, ձևակերպվում է հետևյալ կերպ․ Կաղապար:Քաղվածք
Հրապարակումից անմիջապես հետո պարզ դարձավ, որ առաջադրանքը ոչ ճիշտ է ձևակերպված։ Չեն նշվել բոլոր պայմանները։ Օրինակ, հաղորդավարը կարող է կիրառել «դժոխային Մոնտիի» ռազմավարությունը․ առաջարկել փոխել ընտրությունն այն ժամանակ և միայն այն դեպքում, երբ խաղացողն առաջին քայլով ընտրել է ավտոմեքենան։ Միանշանակ է, որ առաջին ընտրության փոփոխությունը կարող է տանել երաշխավորված պարտության իրավիճակի (տես ստորև)։
Հավելյալ պայմաններով ամենահայտնի առաջադրանքը համարվում է հետևյալը[5]։ Խաղի մասնակցին նախապես հայտնի են հետևյալ պայմանները․
- ավտոմեքենան համահավասար կարող է գտնվել երեք դռներից յուրաքանչյուրի հետևում,
- հաղորդավարը գիտի, թե որտեղ է գտնվում ավտոմեքենան,
- հաղորդավարը ցանկացած պարագայում պետք է բացի այն դռներից մեկը, որտեղ գտնվում է այծը (սակայն, ոչ այն, որն ընտրել է մասնակիցը) և առաջարկի փոխել իր ընտրությունը,
- եթե հաղորդավարն ունի ընտրություն, թե որ երկու դռներից մեկը բացի, նա ընտրում է երկուսից ցանկացածը` միևնույն հավանականությամբ։
Ստորև ներկայացված տեքստում Մոնտի Հոլի առաջադրանքը քննարկվում է հենց այս ձևակերպմամբ։
Վերլուծություն
| Դուռ 1 | Դուռ 2 | Դուռ 3 | Արդյունքը, եթե մասնակիցը փոխել է ընտրությունը | Արդյունքը, եթե մասնակիցը չի փոխել ընտրությունը |
|---|---|---|---|---|
| Ավտոմեքենա | Այծ | Այծ | Այծ | Ավտոմեքենա |
| Այծ | Ավտոմեքենա | Այծ | Ավտոմեքենա | Այծ |
| Այծ | Այծ | Ավտոմեքենա | Ավտոմեքենա | Այծ |
Հաղթելու ռազմավարության համար կարևոր է հետևյալը. եթե դուք, հաղորդավարի գործողություններից հետո, փոխում եք դռան ընտրությունը, ապա դուք հաղթում եք, եթե սկզբնապես ընտրել էիք սխալ դուռը։ Սրա հավանականությունը կազմում է Կաղապար:Frac, քանի որ ի սկզբանե սխալ դուռ ընտրելու հնարավորությունը կազմում է երկու (հնարավոր երեք դռների մեջ)։
Սակայն հաճախ այս առաջադրանքի լուծման ժամանակ խաղացողները մտածում են հետևյալ կերպ. հաղորդավարը միշտ էլ հեռացնում է սխալ դռներից մեկը, և այդ դեպքում ավտոմեքենայի գտնվելը երկու հնարավոր դռներից մեկի հետևում դառնում է հավասար ½, անկախ առաջնային ընտրությունից։ Սակայն այս փաստը ճիշտ չէ։ Չնայած որ ընտրության հնարավորությունը իրոք մնում է երկու դռների միջև, այդ հնարավորությունները (ներառյալ նաև նախապատմությունը), հավասար հավանական չեն։ Դա այդպես է, քանի որ ի սկզբանե բոլոր դռներն ունեցել են հավասար շանսեր` դառնալու հաղթող, սակայն ավելի ուշ ունեցել են տարբեր հավանականություններ` լինելու բացառված։
Մարդկանց մեծամասնության համար այս եզրահանգումը հակասում է իրավիճակի ինտուիտիվ ընկալմանը և ի շնորհիվ տրամաբանական եզրահանգման և պատասխանի միջև առկա անհամապատասխանության, որին հանգում է ինտուիտիվ մտածելակերպը, առաջադրանքը հենց այդպես էլ կոչվում է «Մոնտի Հոլի պարադոքս»։
Դռների հետ կապված իրավիճակը դառնում է էլ ավելի ակնառու, եթե պատկերացնենք, որ դռների թիվը ոչ թե 3 է, այլ ասենք, 1000 և մասնակցի ընտրությունից հետո հաղորդավարը հեռացնում է 998 ավելորդ դռները և թողնում երկու դուռ. այն, որը ընտրել է մասնակիցը և ևս մեկը։ Ավելի ակնհայտ է դառնում այն, որ ավտոմեքենայի երկու դռներից մեկի հետևում գտնվելու հավանականությունը տարբեր է և հավասար չէ ½-ի։ Եթե մենք փոխենք դռները, ապա պարտվում ենք միայն այն դեպքում, երբ ի սկզբանե ընտրել էինք մրցանակային դուռը, որի հավանականությունը կազմում է 1:1000-ի։ Հաղթում ենք մենք նաև այն պարագայում, եթե մեր նախնական ընտրությունը չի եղել ճիշտ, իսկ դրա հավանականությունը կազմում է 999:1000-ի։ Երեք դռների պարագայում տրամաբանությունը պահպանվում է, սակայն հաղթանակի հավանականությունը, ընտրության փոփոխության պարագայում, կազմում է Կաղապար:Frac, այլ ոչ` Կաղապար:Frac:
Դիտարկման մեկ այլ տարբերակ է երկտար պայմանների փոփոխությունը։ Պատկերացնենք, որ մասնակցի կողմից նախնական ընտրության (թող այն միշտ լինի N 1 դուռը) և դրան հաջորդող հաղորդավարի կողմից այծով դռներից մեկի բացման փոխարեն (այսինքն, թող այդ ընտրությունը միշտ լինի 2-րդ և 3-րդ դռների միջև), մասնակիցը պետք է առաջին փորձից գուշակի, թե որ դռան հետևում է գտնվում ավտոմեքենան։ Սակայն նրան նախապես տեղեկացվում է, որ առաջին դռան հետևում ավտոմեքենան կարող է գտնվել 33 % հարաբերակցությամբ, իսկ մյուս երկու դռների պարագայում նշվում է, որ կոնկրետ այս մի դռան հետևում չի գտնվում ավտոմեքենան (0 %)։ Համապատասխանաբար, մյուս դռանը բաժին է ընկնում 67 % հավանականություն և նրա ընտրության ռազմավարությունը դառնում է առաջնային։
Հաղորդավարի այլ վարքագիծ
Մոնտի Հոլի պարադոքսի դասական տարբերակը վկայում է, որ հաղորդավարը պետք է պարտադիր առաջարկի մասնակցին փոխել դռներն, անկախ այն հանգամանքից, թե ընտրել է նա ավտոմեքենան, թե` ոչ։ Սակայն հաղորդավարը կարող է ցուցաբերել նաև ավելի բարդ վարքագիծ։ Այս աղյուսակում հակիրճ նկարագրված են վարքագծի հնարավոր տարբերակները։ Եթե չի ասվել հակառակը, մրցանակները հավասար հավանականությամբ գտնվում են դռների հետևում և հաղորդավարը գիտի, թե որ դռան հետևում է ավտոմեքենան։ Իսկ եթե կա ընտրություն, հաղորդավարը հավասար հավանականությամբ ընտրում է այծերից մեկին։
| Հաղորդավարի հնարավոր վարքագիծ | |
|---|---|
| Հաղորդավարի վարքագիծ | Արդյունք |
| «Դժոխային Մոնտի»` հաղորդավարն առաջարկում է փոխել ընտրությունը, եթե ընտրված դուռը ճիշտ է[4]։ | Ընտրության փոփոխության արդյունքում խաղացողը միշտ պարտվում է, քանի որ ընտրում է այծին։ |
| «Հրեշտակային Մոնտի»` հաղորդավարն առաջարկում է փոխել ընտրությունը, եթե ընտրված դուռը ճիշտ չէ[6]։ | Ընտրության փոփոխության արդյունքում խաղացողը հաղթում է ավտոմեքենա։ |
| «Անտեղյակ Մոնտի» կամ «Մոնտի Բուհ` հաղորդավարը պատահականորեն ընկնում է, բացվում է դուռը և պարզվում, որ դռան հետևում ավտոմեքենան չէ։ Այլ խոսքերով, հաղորդավարն ինքն էլ չգիտի, թե ինչեր են դռների հետևում։ Դուռը բացվում է պատահականորեն և միայն, բարեբախտաբար, դռան հետևում չի գտնվում ավտոմեքենան[7][8][9]։ | Ընտրության փոփոխությունը տալիս է հաղթանակ` դեպքերի ½ պարագայում։ Հենց այդ սկզբունքով է ստեղծված ամերիկյան «Deal or No Deal» հեռուստաշոուն. ճիշտ է պատահական դուռը բացում է հենց խաղացողը։ Եվ եթե դրա հետևում ավտոմեքենան չէ, ապա հաղորդավարն առաջարկում է փոխել։ |
| Հաղորդավարն ընտրում է այծերից մեկը և բացում այդ դուռը, եթե խաղացողն ընտրել է այլ դուռ։ | Ընտրության փոփոխությունը տալիս է հաղթանակ` դեպքերի ½ պարագայում։ |
| Հաղորդավարը միշտ բացում է այծերից մեկի դուռը։ Եթե մասնակիցն ընտրել է ավտոմեքենան, ձախ այծը բացվում է p հավանականությամբ, իսկ աջը` q=1−p հավանականությամբ[8][9][10]։ | Եթե հաղորդավարը բացել է ձախ դուռը, ընտրության փոփոխությունը տալիս է հաղթանակ` հավանականությամբ, իսկ եթե աջը` հավանականությամբ։ Սակայն փորձարկվողը ոչ մի կերպ չի կարող ազդել այն հավանականության վրա, որ կբացվի աջ դուռը. անկախ իր ընտրությունից, այն տեղի կունենա հավանականությամբ։ |
| Նույնը` p=q=½ (դասական դեպք)։ | Փոփոխությունը տալիս է հաղթանակ` Կաղապար:Frac հավանականությամբ։ |
| Նույնը` p=1, q=0 («Անուժ Մոնտի»` հոգնած հաղորդավարը կանգնած է ձախ դռան մոտ և բացում է այն այծի դուռը, որն իրեն ամենամոտն է:)։ | Եթե հաղորդավարը բացեր իրենից աջ գտնվող դուռը, ապա փոփոխությունը կտար երաշխավորված հաղթանակ։ Իսկ եթե ձախը, ապա հավանականությունը կկազմեր ½: |
| Հաղորդավարը միշտ բացում է այցեծրից մեկի դուռը, եթե մասնակիցն ընտրել է ավտոմեքենան և ½ հավանականությամբ` հակառակ դեպքում[11]։ | Ընտրության փոփոխությունը տալիս է հաղթանակ` ½ հավանականությամբ։ |
| Ընդհանուր դեպք. խաղը կրկնվում է մի քանի անգամ։ Այս կամ այն դռան հետևում ավտոմեքենայի թաքցման հավանականությունը, ինչպես նաև այս կամ այն դռան բացումը կամայական է, սակայն հաղորդավարը գիտի, թե որտեղ է ավտոմեքենան և միշտ առաջարկում է փոփոխություն` բացելով այծերից մեկին[12][13]։ | Նեշի հավասարում. հաղորդավարին ամենաձեռնտուն Մոնտի Հոլի հենց դասական տարբերակն է (հաղթանակի հավանականությունը` Կաղապար:Frac): Մեքենան գտնվում է դռներից յուրաքանչյուրի հետևում` ⅓ հավանականությամբ։ Եթե կա ընտրություն, ապա պատահականորեն բացվում է այծերից որևէ մեկի դուռը։ |
| Նույնը, սակայն հաղորդավարը կարող է չբացել և ոչ մի դուռ։ | Նեշի հավասարում. հաղորդավարին ձեռք չի տալիս բացել դռներից մեկը, որի արդյունքում հաղթանակի հավանականությունը մնում է ⅓: |
Ծանոթագրություններ
Գրականություն
- Гмурман В. Е. Теория вероятностей и математическая статистика, — Կաղապար:М: Высшее образование. 2005
- Gnedin, Sasha «The Mondee Gills Game.»Կաղապար:Չաշխատող արտաքին հղում Журнал The Mathematical Intelligencer, 2011
- Савант, Мэрилин вос. Колонка «Ask Marilyn», журнал Parade Magazine от 17 февраля 1990.
- Савант, Мэрилин вос. Колонка «Ask Marilyn», журнал Parade Magazine от 26 февраля 2006.
- Bapeswara Rao, V. V. and Rao, M. Bhaskara. «A three-door game show and some of its variants». Журнал The Mathematical Scientist, 1992, № 2.
- Tijms, Henk. Understanding Probability, Chance Rules in Everyday Life. Cambridge University Press, New York, 2004. (ISBN 0-521-54036-4)
Արտաքին հղումներ
- Объясняющий видеоролик Կաղապար:Webarchive на сайте Smart Videos .ru Կաղապար:Webarchive
- Կաղապար:MathWorld
- Парадокс Монти Холла Կաղապար:Webarchive на сайте телешоу Let’s Make a deal Կաղապար:Webarchive
- Ron Clarke Парадокс Монти Холла Կաղապար:Webarchive
- Отрывок из книги С.Лукьяненко, в котором используется парадокс Монти Холла
- Ещё одно решение по Байесу Կաղապար:Webarchive Ещё одно решение по Байесу на форуме Новосибирского Государственного Университета
- Реализация симулятора парадокса Монти Холла на разных языках (на сайте Rosetta Code)
Կաղապար:Արտաքին հղումներ Կաղապար:Պարադոքսներ
- ↑ Կաղապար:Статья
- ↑ Կաղապար:Статья
- ↑ Կաղապար:Статья
- ↑ 4,0 4,1 Կաղապար:Citation
- ↑ The Monty Hall Problem, Reconsidered. Martin Gardner in the Twenty-First Century
- ↑ Granberg, Donald (1996). «To Switch or Not to Switch». Appendix to vos Savant, Marilyn, The Power of Logical Thinking. St. Martin’s Press. ISBN 0-312-30463-3, (Կաղապար:Google books).
- ↑ Granberg, Donald and Brown, Thad A. (1995). "The Monty Hall Dilemma, " Personality and Social Psychology Bulletin 21(7): 711—729.
- ↑ 8,0 8,1 Կաղապար:Статья Online reprint, 2008.
- ↑ 9,0 9,1 Rosenthal, Jeffrey S. (2005b): Struck by Lightning: the Curious World of Probabilities. Harper Collings 2005, ISBN 978-0-00-200791-7.
- ↑ Morgan, J. P., Chaganty, N. R., Dahiya, R. C., & Doviak, M. J. (1991). "Let’s make a deal: The player’s dilemma, " American Statistician 45: 284—287.
- ↑ Mueser, Peter R. and Granberg, Donald (May 1999). «The Monty Hall Dilemma Revisited: Understanding the Interaction of Problem Definition and Decision Making», University of Missouri Working Paper 99-06. Retrieved June 10, 2010.
- ↑ Gill, Richard (2010) Monty Hall problem. pp. 858—863, International Encyclopaedia of Statistical Science, Springer, 2010. Eprint [1]
- ↑ Gill, Richard (2011) The Monty Hall Problem is not a probability puzzle (it’s a challenge in mathematical modelling). Statistica Neerlandica 65(1) 58-71, February 2011. Eprint [2]