Բազմություն

testwiki-ից
Jump to navigation Jump to search
Բազմանկյունների բազմություն Էյլերի դիագրամի վրա

Բազմություն, իրարից տարբեր օբյեկտների որոշակի հավաքածու, որն իր հերթին դիտարկվում է որպես օբյեկտ։ Բազմության մեջ օբյեկտների դասավորությունը նշանակություն չունի։ Բազմությունները կարող են նշվել ձևավոր փակագծերում՝ թվարկելով բազմության տարրերը։ Օրինակ՝ 2, 4, և 6 տարբեր օբյեկտներ են, երբ դրանք դիտարկվում են առանձին-առանձին, երբ դրանք դիտարկվում են որպես համախմբություն կամ հավաքածու, ապա այն երեք տարրերից բաղկացած պարզ բազմություն է {2, 4, 6}, որը կարող է ներկայացվել նաև Կաղապար:Mset, Կաղապար:Mset, Կաղապար:Mset, Կաղապար:Mset կամ Կաղապար:Mset[1] տեսքով։ Բազմությունները կարող են նաև նշանակվել լատինատառ մեծատառերով՝ A, B, C.[2][3]

Բազմությունները մաթեմատիկայի ամենաֆունդամենտալ հասկացություններից են[4]։ Զարգանալով 19-րդ դարի վերջում[5], բազմությունների տեսությունը այժմ մաթեմատիկայի անբաժան մասն է։ Մաթեմատիկական կրթության մեջ, տարրական թեմաները այնպիսիք, ինչպիսին Վեն դիագրամներն են, ուսուցանվում են դպրոցական տարիքում, մինչդեռ ավելի բարձրակարգ հասկացությունները ուսուցանվում են որպես համալսարանական աստիճանի մաս։

Ծագումնաբանություն

Գերմաներեն Menge բառը, որ հայերենով թարգմանվում «բազմություն» կամ հավաքածու, հորինել է Բեռնարդ Բոլցանոն և հիշատակել իր Անվերջության պարադոքս աշխատության մեջ[6][7][8]։

Սահմանում

Հատված Գեորգ Կանտորի բնօրինակ սահմանման՝ թարգմանությամբ: «Menge» գերմաներեն բառը «set»-ը այստեղ թարգմանվում է «հավաքածու» բառով

Բազմությունը, դա մեր ընկալման (Anschauung) և մեր մտքի մի շարք որոշակի, օբյեկտների խումբ է, որոնք կոչվում են հավաքածուի տարրեր։ [9][10] Օբյեկտները, որ միանալով բազմություն են կազմում (նաև հայտնի որպես բազմության տարրեր կամ անդամներ)[11], կարող են լինել ամեն ինչ՝ թվեր, մարդիկ, այբուբենի տառեր, այլ բազմություններ և այլն[12]։ Բազմությունների տեսության հիմնադիրնեից մեկը՝ Գեորգ Կանտորը իր Beiträge zur Begründung der transfiniten Mengenlehre սկզբում բազմության հետևյալ սահմանումն է տվել[13]։

Բազմությունները սովորաբար նշանակվում են մեծատառերով[2][12][14]։ A և B բազմությունները հավասար են այն և միայն այն ժամանակ, երբ ճշգրիտ միևնույն տարրերից են կազմված[15]։

Տեխնիկական պատճառներից ելնելով, Կանտորի սահմանումը չեղարկվեց որպես ոչ ադեկվատ, այսօր, առավել ճշգրտություն պահանջող կոնտեքստում օգտագործվում է բազմությունների աքսիոմատիկ տեսությունը, որտեղ բազմության գաղափարըն ընդունվում է որպես պարզագույն հասկացություն, իսկ դրա հատկությունները սահմանվում են որպես աքսիոմների հավաքածու[16]։ Ամենահիմնական հատկություններն են՝ բազմությունն ունի տարրեր և երկու բամություն համարժեք են, այն և միայն այն դեպքում, երբ մեկի յուրաքանչյուր տարր նաև երկրորդի տարր է[17]։

Բազմության նշում

Բազմության անդամների նկարագրման երկու տարածված եղանակ գոյություն ունի․ Ռոսթերի նշանակում և բազմության կառուցման նշանակում[18][19]։ Սրանք համապատասխանաբար բազմությունների նկարագրման քստենսիոն և ինտենսիոն սահմանումների օրինակներ են[20]։

Ռոսթերի նշանակում

Ռոսթերի նշանակումը (կամ թվարկումով նշանակումը) դա բազմության յուրաքանչյուր անդամի թվարկման մեթոդ է[18][21][22]։ Ավելի ստույգ, ռոսթեր նշանակման մեջ (ընդարձակ և բովանդակային նկարագրման օրինակ)[20], բազմությունը ներկայացվում է ձևավոր փակագծերում անդամների թվարկմամբ․

A = Կաղապար:Mset
B = Կաղապար:Mset։

Մեծաթիվ տարրերով բազմությունների համար, անդամների թվարկումը կարելի է կրճատել[23][24]։ Օրինակ, առաջին հազար դրական թվերի բազմությունը կարելի է ներկայացնել այսպես․

Կաղապար:Mset,

որտեղ («...») - ը ցույց է տալիս, որ ցուցակը շարունակվում է ըստ ցուցադրված օրինաչափության[23]։

Ռոսթերի նշանակման մեջ, անդամի կրկնություննը բազմությունը չի փոխում, օրինակ Կաղապար:Mset և Կաղապար:Mset բազմությունները նույնն են[25]։} Ավելին, բազմության տարրերի թվարկման կարգը կարևոր չէ (ի տարբերություն հաջորդականության կամ կորտեժ, ուստի Կաղապար:Mset միևնույն հավաքածուն է[3][25]։

Բազմություն կառուցողի ներկայացում

Այս ներկայացման մեջ բազմությունը որոշվում էորպես ընտրություն ավելի մեծ բազմությունից, որ սահմանվում է անդամները ներառող պայմանով[26][27]։ Օրինակ, F բազմությունը կարող է նկարագրվել հետևյալ կերպ․

F={nn դրական ամբողջ թիվ է, և 0n19}.

Այս ներկայացման մեջ, ուղղահայաց գիծը («|») նշանակում է «այնպիսին ինչպես», և նկարագրությունը կարող է մեկնաբանվել որպես «Fn այն բոլոր դրական ամբողջ թվերի բազմությունն է, որոնք ընկած են 0 ից 19 միջակայքում, ներառյալ 19-ը»։ Երբեմն ուղղահայաց գծի փոխարեն օգտագործվում է վերջակետի («:») նշանը[28]։

Բազմություն կառուցողի գրառումը բովանդակային սահմանման օրինակ է[20]։

Բազմության ներկայացման այլ եղանակներ

Բազմության ներկայացման այլ եղանակը սեմանտիկ նկարագրության կիրառումն է․[29]

A -ն բազմություն է, որի անդամները առաջին չորս դրական ամբողջ թվերն են։
B -ն Ֆրանսիայի դրոշի գույների բազմությունն է։

Սա բովանդակային նկարագրության այլ օրինակ է[20]։

Անդամակցություն

Կաղապար:Main Եթե B-ն բազմություն է և xB-ի օբյեկտներից մեկն է, դա գրառվում է այսպես xB և կարդացվում՝ "x-ը B-ի տարր է", ինչպես "x-ը պատկանում է B-ին", կամ "x-ը B-ի մեջ է"[17]։ Եթե yB-ի անդամ չէ, ապա դա գրառվում է այսպես yB, կարդացվում «y-ը B-ի տարր չի», կամ «y -ը B-ում չէ»[2][30][31]։

Օրինակ, A = Կաղապար:Mset, B = Կաղապար:Mset, և F = Կաղապար:Mset,

4 ∈ A և 12 ∈ F; և
20 ∉ F կանաչը ∉ B.

Ենթաբազմություններ

Եթե A-ի յուրաքանչյուր տարր առկա է նաև B-ում, ապա ABենթաբազմություն է, գրառվում է AB (արտասանվում է՝ A -ն պարունակվում է B-ում)[32]։ Սրան համարժեք գրառում է՝ BA (արտանսանվում է՝ B -ն A-ի բազմություն է, B ներառում է իր մեջ A-ն, կամ B -ն պարունակում է իր մեջ A-ն[2][33]։ ⊆ նշանով բազմությունների հարաբերությունը կոչվում է ներառում կամ պարունակություն։ Երկու բազմություն հավասար են, եթե նրանք մեկը մյուսին պարունակում են․ AB և BA համարժեք է A = B[26]։

Եթե ABենթաբազմություն է, սակայն հավասար չէ B-ին, ապա A-ն կոչվում է Bիսկական ենթաբազմություն, գրառվում է AB, կամ պարզապես AB[32] , կամ BA (B-ն A-ի իսկական բազմություն է, BA)[2]։

AB և BA արտահայտությունները տարբեր հեղինակների կողմից տարբեր կերպ են օգտագործվում, որոշ հեղինակներ դրանք օգտագործում են նկատի ունենալով նույնը ինչ որ AB[30][34] (համապատասխանաբար BA), մինչդեռ մյուսներն օգտագործում են դրանք `նույն իմաստով, ինչ AB[32] (respectively BA

Կաղապար:Center

Օրինակներ։

Կա եզակի բազմություն՝ առանց անդամների[35], կոչվում է դատարկ բազմություն (կամ զրո բազմություն), որը նշանակվում է ∅ սիմվոլով կամ {}[2]։ Դատարկ բազմությունը յուրաքանչյուր բազմության ենթաբազմություն է[36], և յուրաքանչյուր բազմություն ինքն իր ենթաբազմությունն է[34]։

  • ∅ ⊆ A։
  • AA։

Բաժիններ

S բազմության բաժինը նրա ոչ դատարկ ենթաբազմությունն է, այնպիսին, որ S-ի յուրաքանչյուր x տարր այդ ենթաբազմություններից ճիշտ մեկի տարր է։ Այսինքն, այդ ենթաբազմությունների ցանկացած զույգ չեն հատվում (այն իմաստով, որ բաժինների ցանկացած երկուսը ընդհանուր տարր չունեն, և բաժանման բոլոր ենթաբազմությունների գումարը S-ն է[37][38]։

Հզոր բազմություններ

S բազմության բոլոր ենթաբազմությունների բազմությունը կոչվում է հզոր բազմություն[26]։ Հզոր բազմությունը պարունակում է S-ը և դատարկ բազմությունը, քանի որ դրանք S-ի ենթաբազմություններ են։ Օրինակ՝ Կաղապար:Mset բազմության հզոր բազմությունը հետևյալ Կաղապար:Mset բազմությունն է։ S բազմության հզոր բազմությունը նշանակվում է P(S)[2][3][26][39]։

n վերջավոր տարրերով բազմության հզոր բազմությունը ունի 2n տարրեր[40]։ Օրինակ՝ Կաղապար:Mset բազմությունն ունի երեք տարր և վերևում ներկայացված հզոր բազմությունն ունի 23 = 8 տարր։

Անվերջ (հաշվելի, թե՝ անհաշվելի ) բազմության հզոր բազմությունն անհաշվելի է։ Ավելին, բազմության հզոր բազմությունը միշտ խիստ «մեծ» է սկզբնական բազմությունից, այն իմաստով, որ հնարավոր չէ S-ի յուրաքանչյուր տարր P (S) ճշգրիտ մեկ տարրի հետ զուգակցել[41]։

Բազմության հզորություն

Կաղապար:Main

Դատարկ բազմության հզորությունը հավասար է զրոյի[42]։

Որոշ բազմությունների հզորությունն անվերջ է։ Օրինակ, N բնական թվերի բազմությունն անվերջ է[26]։ Որոշ անվերջ հզորություններ ավելի մեծ են մյուսներից։ Օրինակ, իրական թվերի բազմությունն ունի ավելի մեծ հզորություն, քան բնական թվերինը[43]։ Այնուամենայնիվ կարելի է ցույց տալ, որ ուղիղ գծի հզորությունը (ուղղի կետերի քանակը) նույնն է ինչ որ այդ ուղղի ցանկացած հատվածի, ամբողջ հարթության և նույնիսկ ցանկացած վերջավոր Էվկլիդյան տարածության[44]։

Հատուկ բազմություններ

ℕ բնական թվերը ℤ ամբողջ թվերի մաս են կազմում, որոնք էլ ℚ ռացիոնալ թվերի մաս են կազմում, սրանք էլ ℝ իրական թվերի, որոնք և ℂ կոմպլեքս թվերի մաաս են կազմում։

Մի շարք բազմություններ, կամ բազմությունների տեսակներ, որոնք մաթեմատիկական մեծ կարևորություն ունեն և այնպիսի հաճախականությամբ են հիշատակվում, որ իրենց իդենտիֆիկացմանհամար ձեռք են բերել հատուկ անուններ և նշանակումներ։Այդպիսի բազմություններից է դատարկ բազմությունը՝Կաղապար:Mset կամ ∅.[2][36] Ճիշտ մեկ x տարրով բազմությունը միավոր բազմություն է, կամ սինգլթոն Կաղապար:Mset[15], այն տարբերվում է x-ից[45]։

Այս բազմություններից շատերը ներկայացվում են թավատառ (P) կամ կիսաթավատառ (ℙ)[46]։ These include[2]:

  • P կամ ℙ-ով է նշանակվում պարզ թվերի բազմությունը․ P = Կաղապար:Mset.[47]
  • N կամ ℕ-ով է նշանակվում բնական թվերի բազմությունը․ N = Կաղապար:Mset (sometimes defined excluding 0).[46]
  • Z կամ ℤ-ով է նշանակվում ամբողջ թվերի բազմությունը (դրական, բացասական և զրո)։ Z = Կաղապար:Mset.[46]
  • Q կամ ℚ-ով է նշանակվում ռացիոնալ թվերի բազմությունը (բոլոր կանոնավոր և անկանոն կոտորակների բազմությունը)․ Q = Կաղապար:Mset. Օրինակ, 1/4 ∈ Q և 11/6 ∈ Q. Բոլոր ամբողջ թվերը այս բազմության մեջ են, քանի որ յուրաքանչյուր a թիվ կարելի է ներկայացնել կոտորակի տեսքով՝ a/1 (ZQ)[46]։
  • R կամ ℝ-ով է նշանակվում բոլոր իրական թվերի բազմությունը։ Այս բազմությունը ներառում է բոլոր ռացիոնալ և իռացիոնալ թվերը (այսինքն հանրահաշվական թվերը չեն կարող ներկայացվել կոտորակի տեսքով, ինչպես Կաղապար:Radic, ինչպես նաև տրանսցենդենտ թվերը, ինչպիսին են π, e)[46]։
  • C or ℂ-ով է նշանակվում բոլոր կոմպլեքս թվերի բազմությունը․ C = Կաղապար:Mset. Օրինակ, 1 + 2iC.[46]
  • H կամ ℍ-ով է նշանակվում բոլոր քվատերնոների բազմությունը․ H = Կաղապար:Mset. Օրինակ, 1 + i + 2jkH[48]։

Վերոնշյալ բոլոր բազմություններն անվերջ են և յուրաքանչյուրը իր ստորևի իսկական ենթաբազմություն է։ Պարզ թվերը Թվերի տեսությունից և հարակից ոլորտներից դուրս ավելի հազվադեպ են օգտագործվում։

Դրական կամ բացասական բազմությունները երբեմն նշվում են վերատառ համապատասխանաբար դրական և բացասական նշաններով։ Օրինակ, ℚ+ ներկայացնում է դրական ռացիոնալ թվերի բազմությունը։

Հիմնական գործողություններ

Գոյություն ունեն մի քանի հիմնարար գործողություններ տված բազմություններից նոր բազմություններ կառուցելու համար։

Միավորումներ

A և Bմիավորումը նշանակվում է Կաղապար:Nowrap

Կաղապար:Main Երկու բազմություն կարելի գումարել միմյանց։ A և B-ն կարելի է միավորումը՝ A ∪ B[2], այն բազմություն է, որի անդամները բոլոր այն օբյեկտներն են, որ կամ A-ի կամ B-ի անդամներ են։

Օրինակներ։

Միավորման մի քանի հիմնական հատկություններ․

Հատում

Կաղապար:Main Նոր բազմություն կարելի է կառուցել նաև տարրերից, որոնք ընդհանուր են երկու բազմությունների համար։ A և B բազմությունների հատումը նշանակվում է Կաղապար:Nowrap[2] և իրենից ներկայացնում է այն օբյեկտները, որոնք միաժամանակ A և B բազմությունների անդամ են։ Եթե Կաղապար:Nowrap ապա A և B բազմությունները չեն հատվում։

A and B բազմությունների հատումը նշանակվում է Կաղապար:Nowrap

Օրինակներ։

Հատումների մի քանի հիմնական հատկություններ

Լրացումներ

Կաղապար:Main Երկու բազմություններ կարող են նաև մեկը մյուսից "հանել"։ The relative complement of B-ի հարաբերական լրացումը A-ում (նաև անվանվում է A և B-ի բազմությունների տարբերություն), գրառվում է Կաղապար:Nowrap (կամ Կաղապար:Nowrap)[2], դա is the set of all elements that are members of A,-ի բոլոր այն տարրերի բազմությունն է, որոնք B-ի անդամ չեն։ Թույլատրելի է նաև բազմությունից հանել անդամներ, որոնք տվյալ բազմության անդամ չեն, այնպես որ կանաչ տարրը հանել Կաղապար:Msetբազմությունից, այս կերպ վարվելը չի ազդի բազմության տարրերի վրա։ Որոշակի պայմաններում քննարկվող բոլոր բազմությունները ենթադրվում են որպես U մաթեմատիկական տարածության ենթաբազմություններ. Այդ դեպքում Կաղապար:Nowrap-ը կոչվում է Aբացարձակ լրացում կամ պարզապես լրացումև նշանակվում որպես A′ կամ Ac[2]

Օրինակներ։

  • Կաղապար:Nowrap
  • Կաղապար:Nowrap
  • Եթե U-ն ամբողջ թվերի բազմությունն է, E-ն զույգ թվերի և O-ի, ապա կենտ թվերի բազմությունը կլինի U \ E = E′ = O.

Լրացման մի քանի հիմնական հատկություններն են՝

A, B բազմությունների համար սահմանված լրացման ընդլայնումը սիմետրիկ տարբերությունն է և գրառվում է․

AΔB=(AB)(BA).

Օրինակ, Կաղապար:Mset և Կաղապար:Mset բազմությունների սիմետրիկ տարբերությունը Կաղապար:Mset բազմությունն է։

Դեկարտյան արտադրյալ

Նոր բազմություն կարելի է կառուցել միավորելով մի բազմության յուրաքանչյուր տարր, միավորելով մեկ այլ բազմության յուրաքանչյուր տարրի հետ։ Երկու A և B բազմությունների Դեկարտյան արտադրյալ A × B նշանակմամբ[2], դա բոլոր (a, b) կարգավորված զույգերի բազմությունն է, այնպես որ a A-ի անդամ է և bB-ի անդամ է։

Օրինակներ․

Դեկարտյան արտադրյալի որոշ հիմնական հատկություններ՝

Թող A և B-ն վերջավոր բազմություններ են, ապա դեկարտյան արտադրյալի հզորությունը հավասար է այդ բազմությունների հզորությունների արտադրյալը․

  • | A × B | = | B × A | = | A | × | B |.

Կիրառություններ

Բազմությունների տեսությունը դիտարկվում է որպես հիմք, որից բոլոր մաթեմատիկայի մոլոր ճյուղերը կարելի է դուրս բերել։ Օրինակ՝ աբստրակտ հանրահաշվի հանրահաշվական կառուցվածքները, ինչպիսիք են խմբերը, դաշտերը, օղակները բազմություններ են մեկ կամ մի քանի գործողություններ կատարելու ժամանակ։

Բազմությունների տեսության գլխավոր կիրառություններից մեկը հարաբերությունների կառուցումն է։ A տիրույթի հարաբերությունը B համատիրույթի հետ A × B' դեկարտյան արտադրյալի ենթաբազմություն է։

Առընչություններ բազմությունների միջև

Էյլերի դիագրամ ABհամար

A և B երկու բազմությունները կարող են միմյանց հետ տարբեր առընչություն ունենալ

  • A ընդգրկում B, եթե A-ի յուրաքանչյուր անդամը պատկանում է նաև B բազմությանը։
    ABaA:aB
  • A ընդգրկում է B, եթե B պատկանում է A:
    ABBA
  • A հավասար է B, եթե A և B ընդգրկում են մեկը մյուսին։
    A=B(AB)(BA)
    • Ցանկացած բազմության համար A=A
    • Եթե A=B, ապա B=A
    • Եթե A=B, B=C, ապա A=C.
  • A խստորեն պատկանում է B, եթե Aպատկանում է B, բայց նրան հավասար չէ։
    AB(AB)(AB)
  • A խստորեն պատկանում է B, եթե B խստորեն պատկանում է A:
    ABBA
  • A և B չեն հատվում,եթե ընդհանուր անդամներ չունեն։
    A և B չեն հատվում aA:aB
  • A և B գտնվում են ընդհանուր վիճակում, եթե գոյություն ունի անդամ, որ պատկանում է միայն A բազմությանը, անդամ, որ պատկանում է միայն B-ին և անդամ, որ պատկանում է երկուսին էլ։
    A և B գտնվում են ընդհանուր վիճակում a,b,c:(aA)(aB)(bB)(bA)(cA)(cB)

Գործողություններ բազմությունների հետ

Վենի դիագրամ ABհամար
Վենի դիագրամ ABհամար
Վենի դիագրամ ABհամար
Վենի դիագրամ ABհամար
  • հատում․
    AB:={xxAxB}.
  • միավորում․
    AB:={xxAxB}.
Եթե A և B բազմությունները չեն հատվում, ապա AB=. Նրանց միավորումը նշանակում են նաև հետյալ ձևով՝ A+B=AB
  • տարբերություն․
    AB:=AB={xxAxB}.
  • համաչափ տարբերություն․
    ABA˙B:=
    (AB)(AB)=AB+AB=
    ={x(xAxB)(xAxB)}.
  • դեկարտյան կանմ ուղիղ արտադրյալ․
    A×B={(a,b)aA,bB}.
Վենի դիագրամ (AB)համար

Բազմության տարրեր կամ անդամներ կարող են լինել՝ թվեր, մարդիկ, այբուբենի տառեր, ուրիշ բազմություններ և այլն։ Բազմությունները պայմանականորեն նշանակվում են մեծատառերով։ A և B բազմությունները հավասար են այն և միայն այն դեպքում, երբ նրանք բաղկացած են ճիշտ նույն էլեմենտներից[15]։

Ծանոթագրություններ

Կաղապար:Ծանցանկ

  1. Կաղապար:Cite book
  2. 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 Կաղապար:Cite web
  3. 3,0 3,1 3,2 Կաղապար:Cite web
  4. Կաղապար:Cite book
  5. Կաղապար:Cite book
  6. Կաղապար:Cite book
  7. Կաղապար:Cite book
  8. Կաղապար:Cite book
  9. Կաղապար:Cite book
  10. Կաղապար:Cite book
  11. Կաղապար:Cite book
  12. 12,0 12,1 Կաղապար:Harvnb
  13. "Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens – welche Elemente der Menge genannt werden – zu einem Ganzen." [1]
  14. Կաղապար:Cite book
  15. 15,0 15,1 15,2 Կաղապար:Cite book
  16. Կաղապար:Cite book
  17. 17,0 17,1 Կաղապար:Harvnb
  18. 18,0 18,1 Կաղապար:Cite book
  19. Կաղապար:Cite book
  20. 20,0 20,1 20,2 20,3 Կաղապար:Cite book
  21. Կաղապար:Cite book
  22. Կաղապար:Cite book
  23. 23,0 23,1 Կաղապար:Cite book
  24. Կաղապար:Cite book
  25. 25,0 25,1 Կաղապար:Cite book
  26. 26,0 26,1 26,2 26,3 26,4 Կաղապար:Cite book
  27. Կաղապար:Cite web
  28. Կաղապար:Cite book
  29. Կաղապար:Harvnb
  30. 30,0 30,1 Կաղապար:Cite book
  31. Կաղապար:Cite web
  32. 32,0 32,1 32,2 Կաղապար:Cite book
  33. Կաղապար:Cite book
  34. 34,0 34,1 Կաղապար:Harvnb
  35. Կաղապար:Cite book
  36. 36,0 36,1 Կաղապար:Harvnb
  37. Կաղապար:Cite book
  38. Կաղապար:Harvnb
  39. Կաղապար:Harvnb
  40. Կաղապար:Harvnb
  41. Կաղապար:Cite book
  42. Կաղապար:Cite book
  43. Կաղապար:Cite book
  44. Կաղապար:Cite book
  45. Կաղապար:Harvnb Որպես անալոգիա, Հալմոսը նշում է, որ գլխարկ պարունակող տուփը նույնը չէ, ինչ գլխարկը։
  46. 46,0 46,1 46,2 46,3 46,4 46,5 Կաղապար:Cite book
  47. Կաղապար:Cite book
  48. Կաղապար:Cite book