Նուրբ կառուցվածքի հաստատուն

testwiki-ից
Jump to navigation Jump to search

Նուրբ կառուցվածքի հաստատուն, հիմնարար ֆիզիկական հաստատուն, բնութագրում է էլեկտրամագնիսական փոխազդեցության ուժը։ Նշանակվում է հունարեն α տառով։ Չափողականություն չունեցող մեծություն է, ուստի արժեքը նույնն է ցանկացած միավորների համակարգում։ 1916 թ. առաջին անգամ ներկայացրել է Առնոլդ Զոմմերֆելդը։ Ներկայումս հաշվարկված α-ի արժեքը 1/137,035999074(44) կամ 7,2973525698(24)×10−3 է։

Սահմանումը

Նուրբ կառուցվածքի հաստատունը սահմանվում է այլ հիմնարար ֆիզիկական հաստատունների միջոցով.

α=e2(4πε0)c=e2cμ02h=kee2c

որտեղ

ՍԳՎ համակարգում էլեկտրական լիցքի միավորը սահմանվում է այնպես, որ Կուլոնի հաստատունը՝ ke-ն, կամ 4πε0 բազմապատկիչը լինի 1 և չափողականություն չունենա։ Այդ դեպքում նուրբ կառուցվածքի հաստատունը ներկայացվում է

α=e2c

տեսքով, ինչպես հիմնականում հանդիպում է գրականության մեջ։

Բարձր էներգիաների ֆիզիկայում սովորաբար կիրառվող բնական միավորներով, որտեղ ε0 = c = ħ = 1, նուրբ կառուցվածքի արժեքը կլինի[1]

α=e24π

Որպես այդպիսին, նուրբ կառուցվածքի հաստատունը պարզապես տարրական էլեկտրական լիցքի այլընտրանքային ներկայացումն է. e = 4πα   0.30282212 լիցքի բնական միավորներով։

Ֆիզիկական մեկնաբանությունը

Ֆիզիկայում α-ն մեկնաբանվում է մի քանի եղանակներով.

α=(eqP)2:
  • որպես երկու էներգիաների հարաբերություն, որոնցից մեկը միմյանցից d հեռավորության վրա գտնվող երկու էլեկտրոնների էլեկտրաստատիկ վանողությունը հաղթահարելու համար անհրաժեշտ էներգիան է, մյուսը՝ λ=2πd ալիքի երկարությամբ ֆոտոնի էներգիան.
α=e24πε0d×λhc=e24πε0d×2πdhc=(e24πε0r×rc)=e24πε0c.
  • Էլեկտրոնի արագության հարաբերությունը լույսի արագությանը Բորի ատոմական մոդելում։ Այսպիսով α-ի քառակուսին Հարթրիի էներգիայի (Կաղապար:Nowrap) և էլեկտրոնի հանգստի զանգվածի (511 կէՎ) հարաբերությունն է։
  • Երեք բնութագրական երկարությունների հարաբերակցություն. re էլեկտրոնի դասական շառավղի, a0 Բորի շառավղի և էլեկտրոնի՝ λe Կոմպտոնի ալիքի երկարության.
re=αλe2π=α2a0
  • Քվանտային էլեկտրադինամիկայում α-ն փոխազդեցության հաստատուն է, որով որոշվում է փոխազդեցության ուժը էլեկտրոնների և ֆոտոնների միջև։ Այս տեսությամբ α-ի արժեքը չի որոշվում, այն պետք է որոշվի փորձնականորեն։ Փաստացի α-ն տարրական մասնիկների ֆիզիկայում ստանդարտ մոդելի այն 20 փորձնական պարամետրերից մեկն է, որոնց արժեքը չի սահմանվում ստանդարտ մոդելով։
  • էլեկտրաթույլ փոխազդեցության տեսության մեջ, որը միավորում է թույլ և էլեկտրամագնիսական փոխազդեցությունները, α-ն ներառվում է երկու այլ փոխազդեցության հաստատունների մեջ, որոնք ներկայացվում են էլեկտրաթույլ տրամաչափային դաշտերով։ Այս տեսության մեջ էլեկտրամագնիսական փոխազդեցությունը մեկնաբանվում է որպես էլեկտրաթույլ դաշտերով պայմանավորված փոխազդեցությունների խառնուրդ։ Էլեկտրամագնիսական փոխազդեցության ուժը փոփոխվում է ըստ էներգիական դաշտի ուժի։
  • Պլանկի զանգվածով և տարրական էլեկտրական լիցքով, միմյանցից որոշակի հեռավորության վրա գտնվող երկու հիպոթետիկ նյութական կետերի համար α-ն նրանց էլեկտրաստատիկ վանողության ուժի և գրավիտացիոն ձգողական ուժի հարաբերակցությունն է։
  • Էլեկտրատեխնիկայում և պինդ մարմնի ֆիզիկայում նուրբ կառուցվածքի հաստատունը հավասար է G0 էլեկտրահաղորդականության քվանտի՝ G0 = 2e2/h և Z0 ազատ տարածության իմպենդանսի՝ Z0 = 1/(c ε0) արտադրյալի մեկ քառորդին՝
α=14Z0G0:

Երբ քվանտային էլեկտրադինամիկայում կիրառվում է խոտորումների տեսությունը, ստացված ֆիզիկական արդյունքները ներկայացվում որպես α-ի աստիճանային շարք։ Քանի որ α-ն շատ փոքր է մեկից, բարձր աստիճանները անտեսվում են, և խոտորումների տեսությունը այս դեպքի համար խիստ պրակտիկ է։ Ռենորմալացնող խմբերի տեսության համաձայն, նուրբ կառուցվածքի հաստատունը էներգիայի աճի հետ աճում է լոգարիթմական օրենքով։

Պատմություն

Նուրբ կառուցվածքի հաստատունը 1916 թ. ներկայացրել է Առնոլդ Զոմմերֆելդը Բորի ատոմի մոդելից սպեկտրային գծերի շեղումները բացատրող իր տեսության մեջ։ α-ի առաջին ֆիզիկական մեկնաբանությունը ռելյատիվիստական Բորի ատոմում առաջին շրջանային ուղեծրում գտնվող էլեկտրոնի արագության հարաբերությունն էր վակուումում լույսի արագությանը[2]։ Համարժեք մեկնաբանմամբ այն մի բազմապատկիչ էր առավելագույն անկյունային մոմենտի (որը թույլ էր տրվում հարաբերականության կողմից փակ ուղեծրի համար) և նվազագույն անկյունային մոմենտի (որը թույլ էր տալիս քվանտային մեխանիկան) միջև։ Այն ի հայտ է գալիս Զոմերֆելդի վերլուծություններից և որոշում էր ջրածնային սպեկտրային գծերի (Լիմանի շարքի) ճեղքվածքի չափը կամ նուրբ կառուցվածքը։ Նուրբ կառուցվածքի հաստատունը այնպես էր գրգռել ֆիզիկոս Վոլֆգանգ Պաուլիի երևակայությունը և հետաքրքրասիրությունը, որ նա արտասովոր հետազոտություն ձեռնարկեց հոգեբան Կարլ Յունգի հետ միասին դրա նշանակությունը հասկանալու համար[3]

Քաղվածքներ

Կաղապար:Quote Կաղապար:Cquote

Անտրոպիկ բացատրություն

Անտրոպիկ սկզբունքը ներկայացնում է վիճելի արգումենտ, թե ինչու է նուրբ կառուցվածքի հաստատունի արժեքը հենց այն, ինչ կա։ Ըստ նրա, կայունը մատերիան, ուստի և կյանքը և բանական էակները գոյություն չէին ունենա, եթե ալֆայի արժեքը ինչ-որ չափով այլ լիներ։ Օրինակ, եթե α-ն փոխվի 4%-ով, միջուկային սինթեզը չի առաջացնի ածխածին, այնպես որ անհնար կլինի ածխածնով պայմանավորված կյանքը։ Եթե α-ն մեծ լիներ 0,1-ից, , հնարավոր չէր լինի աստղի սինթեզ, և Տիեզերքում բավականաչափ ջերմություն չէր լինի կյանքի համար[4]։

Հաստատունության հարց

Հարցի հետազոտությունը, թե արդյո՞ք ալֆան հաստատուն մեծություն է, այսինքն՝ միշտ ունեցել է միևնույն արժեքը թե փոխվել է Տիեզերքի զարգացման ընթացքում, երկար պատմություն ունի։ Նման պատկերացումները առաջին անգամ ի հայտ եկան 1930-ական թթ՝ Տիեզերքի ընդարձակման հայտնաբերումից հետո, և նպատակ ունեին պահպանել Տիեզերքի ստատիկ մոդելը ժամանակի ընթացքում հիմնարար հաստատունների փոփոխվելու հաշվին։ Այսպես, մի հոդվածում[5] Ջ. և Բ. Չալմերսովները առաջարկում են գալակտիկաների սպեկտրային գծերի կարմիր շեղման բացատրությունը որպես տարրական էլեկտրական լիցքի և Պլանկի հաստատունի միաժամանակյա աճի (ինչի պատճառով ալֆան կունենա ժամանակային կախվածություն) հետևանք։ Այլ հրապարակումներում[6][7] ենթադրվում էր, որ նուրբ կառուցվածքի հաստատունը անփոփոխ է մնում այն կազմող հաստատունների միաժամանակյա փոփոխության դեպքում։

1938 թ. Պոլ Դիրակը իր Մեծ թվերի հիպոթեզում առաջարկեց, որ գրավիտացիոն հաստատունը կարող է փոքրանալ ժամանակին հակադարձ համեմատական կարգով։ Իր դիտարկման մեջ նա α-ն համարում էր իսկական հաստատուն, սակայն նշում էր, որ ապագայում կարող է այդպես չլինել։ Դիրակի այդ աշխատությունը մեծ հետաքրքրություն առաջացրեց խնդրի նկատմամբ, ինչը պահպանվել է մինչ այսօր։ Դիրակին հետևելով, նուրբ կառուցվածքի հաստատունության հարցը դիտարկեց Պասկուալ Յորդանը և եկավ այն եզրակացության, որ ալֆայի կախվածությունը ժամանակից պետք է բարդ շեղումներ առաջացնի սպեկտրային գծերում[8]։ Քանի որ նման շեղումներ չդիտվեցին, նա մերժեց այդ հիպոթեզը։ 1948 թ., փորձելով ժխտել Դիրակի հիպոթեզը, Էդվարդ Թելերը նշում է 1/αlnT, լոգարիթմական կախվածության մասին, որտեղ T-ն Տիեզերքի տարիքն է[9]։ Ավելի ուշ ևս առաջարկվեցին համանման առնչություններ։ Առաջարկված է տեսակետ, ըստ որի α-ն հանդիսանում է "չնկատված" անկախ հաստատուն՝ ալիքային ինտերֆերենցիոն վերաբաշխման հարաբերություն, որի արժեքը արտածվում է դասագրքային ֆորմուլաներից[10]։

Ծանոթագրություններ

Կաղապար:Ծանցանկ

  1. Peskin, M.; Schroeder, D. (1995). An Introduction to Quantum Field Theory. Westview Press. ISBN 0-201-50397-2. p. 125.
  2. Կաղապար:Cite web
  3. Կաղապար:Cite journal
  4. Կաղապար:Cite journal
  5. J. A. Chalmers, B. Chalmers, The expanding universe—an alternative view, Philosophical Magazine Series 7, 1935, vol. 19, pages 436—446
  6. S. Sambursky, Static Universe and Nebular Red Shift, http://dx.doi.org/10.1103/PhysRev.52.335, Physical Review, 1937, vol. 52, 335—338
  7. J. O'Hanlon, K.-K. Tam, Time Variation of the Fundamental Constants of Physics, http://dx.doi.org/10.1143/PTP.41.1596, Progress of Theoretical Physics, 1969, vol. 41, pages 1596—1598
  8. P. Jordan., Über die kosmologische Konstanz der Feinstrukturkonstanten, http://dx.doi.org/10.1007/BF01340095, Zeitschrift für Physik, 1939, vol. 113, pages= 660—662
  9. E. Teller, On the Change of Physical Constants, http://dx.doi.org/10.1103/PhysRev.73.801 Physical Review, 1948, vol. 73, pages 801—802
  10. G. Kirakosyan, Deduction of Coupling Constant as a wave peculiarity ..., [1]