Իդեալական գազի վիճակի հավասարում

testwiki-ից
Jump to navigation Jump to search

Կաղապար:Sidebar with collapsible lists

Իդեալական գազի վիճակի հավասարում, իդեալական գազի վիճակի հավասարում(Կլապեյրոնի հավասարում, Մենդելեև-Կլապեյրոնի հավասարում ), որն անվանվել է դրանց հայտնաբերող Բ. Կլապեյրոնի և Դ. Մենդելեևի անունով։

Հավասարումն ունի հետևյալ տեսքը՝
pV=nRT

որտեղ p-ն ճնշումն է, V-ն՝ գազի մոլային ծավալը, T-ն՝ բացարձակ ջերմաստիճանը, R-ը՝ ունիվերսալ գազային հաստատունը Կաղապար:Math։ Կլապեյրոնի հավասարումից բխում են Բոյլ-Մարիոտի օրենքը, Գեյ-Լյուսակի օրենքը և իդեալական գազերին վերաբերող մասնավոր այլ օրենքներ։ Կլապեյրոնի հավասարումով որոշակի ճշտությամբ նկարագրվում են փոքր խտության իրական գազերը բարձր ջերմաստիճանների դեպքում։

Քանի որ, VM=Vν, (որտեղ ν=mM -ը նյութի քանակն է, mզանգվածը, Mմոլային զանգվածը) վիճակի հավասարումը կարելի է գրել

pV=mMRT,

կամ p=nkT,

որտեղ n=N/V-ատոմների կոնցենտրացիան է, k=RNA-Բոլցմանի հաստատուն.

Այս հավասարումը կոչվում է Մենդելեև-Կլապեյրոնի հավասարում։

Գազի նյութի քանակը որոշվում է նորմալ ճնշման և ջերմաստիճանի պայմաններում։ Հավասարման մեջ օգտագործվող ջերմաստիճանը բացարձակ ջերմաստիճան է։ Ջերմաստիճանի համապատասխան ՄՀ հիմնական միավորը կալվինն է (Կ)[1]։

Կլապեյրոնի հավասարման հաստատունը այնքան էլ հաստատուն չէր, քանի որ անհրաժեշտ էր հաշվել յուրաքանչյուր գազի համար․

pV=rT.

Մենդելեևը հայտնաբերեց, որ r-ը ուղիղ համեմատական է ν-ին և համեմատականության գործակից R-ը անվանեց ունիվերսալ գազային հաստատուն։

Թերմոդինամիկական պրոցեսների աղյուսակ

Պրոցես Հաստատուն Մյուս մեծության փոփոխություն P2 V2 T2
Իզոբար պրոցես
Ճնշում
V2/V1
P2 = P1 V2 = V1(V2/V1) T2 = T1(V2/V1)
T2/T1
P2 = P1 V2 = V1(T2/T1) T2 = T1(T2/T1)
Իզոխոր պրոցես
Ծավալ
P2/P1
P2 = P1(P2/P1) V2 = V1 T2 = T1(P2/P1)
T2/T1
P2 = P1(T2/T1) V2 = V1 T2 = T1(T2/T1)
Իզոթերմ պրոցես
 Ջերմաստիճան 
P2/P1
P2 = P1(P2/P1) V2 = V1/(P2/P1) T2 = T1
V2/V1
P2 = P1/(V2/V1) V2 = V1(V2/V1) T2 = T1
Ադիաբադ պրոցես

(իզոտոպ)

Էնտրոպիա
P2/P1
P2 = P1(P2/P1) V2 = V1(P2/P1)(−1/γ) T2 = T1(P2/P1)(γ − 1)/γ
V2/V1
P2 = P1(V2/V1)−γ V2 = V1(V2/V1) T2 = T1(V2/V1)(1 − γ)
T2/T1
P2 = P1(T2/T1)γ/(γ − 1) V2 = V1(T2/T1)1/(1 − γ) T2 = T1(T2/T1)
Բազմատրոպ պրոցես
P Vn
P2/P1
P2 = P1(P2/P1) V2 = V1(P2/P1)(-1/n) T2 = T1(P2/P1)(n − 1)/n
V2/V1
P2 = P1(V2/V1)−n V2 = V1(V2/V1) T2 = T1(V2/V1)(1 − n)
T2/T1
P2 = P1(T2/T1)n/(n − 1) V2 = V1(T2/T1)1/(1 − n) T2 = T1(T2/T1)
Ադիաբադ պրոցես
(իզոտալպ)
Էնտալպիա
P2 − P1
P2 = P1 + (P2 − P1) T2 = T1 + μJT(P2 − P1)
T2 − T1
P2 = P1 + (T2 − T1)/μJT T2 = T1 + (T2 − T1)

Կապ իդեալական գազի վիճակի մյուս հավասարումների հետ

Հաստատուն զանգվածի դեպքում հավասարումն ունենում է հետևյալ տեսքը․

pVT=νR,
pVT=const.

Վերջին p1V1T1=p2V2T2հավասարումը կոչվում է միացյան գազային օրենք։ Դրանից ստացվում է Բոյլ-Մարիոտի, Շառլի և Գեյ-Լյուսակի օրենքները։

Բոյլ—Մարիոտի օրենք՝ T=constpV=const
Գեյ-Լյուսակի՝ p=constVT=const
Շառլի օրենք՝ V=constpT=const․(Գեյ-Լյուսակի երկրորդ 1808 թվական.)

Այդ օրենքը հարմար է տարբեր վիճակների անցման տեսանկյունից։

Քիմիայի տեսանկյունից այս օրենքը կարող է հնչել այլ կերպ․

Ռեակցիայի մեջ մտնող գազերի ծավալները, նույն պայմանների դեպքում( ջերմաստիճան, ճնշում) հարաբերում են իրար և առաջացող գազանման միացումների ծավալներին ինչպես ամբողջ թվեր։

Օրինակ,1 ծավալով ջրածինը միանում է 1 ծավալով քլորին, ստացվում է 2 ծավալ քլորաջրածին․

H2+ClA22HCl

1 ծավալ1ազոտը 3 ծավալ ջրածնի հետ առաջացնում է 2 ծավալ ամոնյակ․

N2+3HA22NH3

Տես նաև

Ծանոթագրություն

Կաղապար:Ծանցանկ

Գրականություն

Կաղապար:Արտաքին հղումներ